

ZestSC1

User Guide

Author Charles Sweeney and Matt Bowen

Version 1.06

Date 4th December 2007

Orange Tree Technologies

Orange Tree Technologies

Page 2 of 57

Version Date Comment

1.00 02/11/04 First Version
1.01 01/02/05 Clarifications for power supply and clocks
1.02 17/02/05 Resettable fuse ratings
1.03 07/03/05 Added 512 byte transfer restriction
1.04 28/04/05 Added Verilog support
1.05 14/03/06 Updated for LP USB interface
1.06 04/12/07 Added contents of shipping package

Rubber feet supplied separately

© 2007 Orange Tree Technologies Ltd. All rights reserved. All trademarks and registered
trademarks are the property of their respective owners. All specifications are subject to
change without notice.

Disclaimer
This document provides outline information only. Orange Tree Technologies reserves the
right to change this document without notice. Orange Tree Technologies makes no
warranty of any kind, expressed or implied, with regard to any information contained in
this document, including, but not limited to, the implied warranties of merchantability or
fitness for any particular purpose. Further, Orange Tree Technologies does not warrant
the accuracy or completeness of the information, text, graphics, or other items contained
in this document. Orange Tree technologies cannot accept any liability for loss or
damages arising from the use of this manual or the use of products described in it.

Orange Tree Technologies products are not designed for use in life-support equipment or
applications that would cause a life-threatening situation if any such products failed. Do
not use Orange Tree Technologies products in these types of equipment or applications.
For all restrictions on use of Orange Tree Technologies products see Orange Tree
Technologies Terms and Conditions of Sale.

 ZestSC1 User Guide

 CONFIDENTIAL Page 3 of 57

1 Contents

1 CONTENTS.. 3

2 GLOSSARY.. 4

3 REFERENCES... 4

4 INTRODUCTION.. 5

5 SYSTEM REQUIREMENTS.. 5

6 INSTALLATION... 6
6.1 INTRODUCTION.. ERROR! BOOKMARK NOT DEFINED.
6.2 HARDWARE .. 6

6.2.1 Headers.. 7
6.3 SOFTWARE..10

7 DESCRIPTION..11
7.1 USB ..11

7.1.1 Communications with Host...13
7.2 FPGA..17
7.3 MEMORY...18
7.4 IO..20
7.5 LEDS ..21
7.6 CLOCKS...22
7.7 POWER ..22
7.8 BUILD OPTIONS ..24

8 USING THE HOST LIBRARY...25

9 HOST UTILITIES...26
9.1 BIT2C..26
9.2 SETID..26

10 EXAMPLES ...27

11 HOST LIBRARY FUNCTION REFERENCE..28

Orange Tree Technologies

Page 4 of 57

2 Glossary
DCI Digitally Controlled Impedance

DCM Digital Clock Manager

Endpoint A USB endpoint is the source or destination of a USB transfer

GPIF General Programmable Interface of the USB controller

SIE Serial Interface Engine for USB

UCF User Constraints File

USB Universal Serial Bus

3 References
1. Cypress Semiconductor Corporation, CY7C68013 EZ-USB FX2 USB Microcontroller

High-speed USB Peripheral Controller, Rev C, 19th December 2002.

2. Cypress Semiconductor Corporation, GPIF Designer, Version 1.0.0.6, 2003.

3. Cypress Semiconductor Corporation, EZ-USB FX2 Technical Reference Manual,
Version 2.2, 2003.

4. Cypress Semiconductor Corporation, EZ-USB FX2 GPIF Primer, 29th April 2003.

5. Cypress Semiconductor Corporation, Introduction to the EZ-USB FX2 GPIF
Engine, 29th May 2002.

6. Cypress Semiconductor Corporation, CY7C1356B 512K x 18 Pipelined SRAM with
NoBL Architecture, Rev A, 27th August 2003.

7. Cypress Semiconductor Corporation, CY7C1472V33 4M x 18 Pipelined SRAM with
NoBL Architecture, Rev C, 16th June 2004.

8. Xilinx Inc., Synthesisable 200MHz ZBT SRAM Interface, XAPP136 V2.0, 10th
January 2000.

 ZestSC1 User Guide

 CONFIDENTIAL Page 5 of 57

4 Introduction
Thank you for purchasing a ZestSC1. This user guide explains how to install the ZestSC1
and how to start using it with some examples. Please read this guide fully before starting
to use the ZestSC1.

5 System Requirements
1. A host computer or USB hub with an available USB port. The USB port may be either

Full Speed 12Mbps (USB V1.1 or 2.0) or High Speed 480Mbps (USB V2.0).

2. Windows 2000 or Windows XP operating system.

3. Space about 150 x 150 mm on a desk or bench near the host computer for placing
the board.

4. Operating ambient temperature range 0 to +40 deg C.
Storage ambient temperature range -40 to +85 deg C.

5. ZestSC1 can be either bus-powered (power is drawn from the USB port) or self-
powered (power is drawn from either a PC hard disk power connector or a mains
power wall adapter (not supplied unless ordered separately)).

a) If the USB port is to be used to supply power (ZestSC1 is bus-powered)
then it must be a high power (500mA) port. Most computer USB ports are
high power but see paragraph i) below for how to determine the power rating of a
USB port. For USB hubs see paragraph ii) below. A high power USB port provides
2.5W. The quiescent power of ZestSC1 is given in the section titled Power.

i) To determine the power rating of a computer USB port, do the following:

(1) Go to Control Panel -> System -> Hardware -> Device Manager ->
Universal Serial Bus Controllers.

(2) Right click a USB Root Hub, then go to Properties -> Power.
(3) Under Hub information, Total power available should be 500mA per port.
(4) Repeat for all USB Root Hubs.

ii) If ZestSC1 is to be bus-powered use only self-powered USB hubs with
high power (500mA) ports. Bus-powered USB hubs generally have only
low power (100mA) ports and should be used only if ZestSC1 is self-powered.
The documentation for your USB hub should give the power rating of the
ports.

b) If more than 2.5W of power is required then a PC hard disk power connector or a
mains power wall adapter can be used to make the board self-powered. The wall
adapter should be switch mode with low ripple and have an output voltage
between 3.5V and 5.5V (nominally 4.5V or 5.0V), an output current of at least
1A, and a female plug inner diameter of 2.5mm. The plug from the wall
adapter should have +5V power on the outside of the pin and ground on
the inside of the pin.

Orange Tree Technologies

Page 6 of 57

6 Installation

6.1 Packing List

Please check that the following items are in the package sent to you and contact Orange
Tree Technologies if any are missing:

1. ZestSC1 card in anti-static bag
2. Four self-adhesive rubber feet in the same anti-static bag as the card
3. ZestSC1 Support Software CD
4. USB cable
5. Installation Instructions printed sheet
6. Known Issues printed sheet
7. Power supply wall adapter, if ordered

Please read fully and then follow these installation instructions.

6.2 Hardware

1. Check that your target system in which ZestSC1 will be used meets the system
requirements of the previous section.

2. Ideally all these installation operations should be performed in an anti-static
environment with an anti-static workbench and anti-static wrist-straps.
Alternatively if this is not possible you should earth yourself regularly during
installation by touching an unpainted earthed metal surface.

3. If required, stick the self-adhesive rubber feet in the four corners of the board.

4. Place the board on a flat surface close enough to the host PC so that the USB cable
reaches between them.

5. Set the jumpers as required – see the Headers section. The board is supplied with the
default settings, which should be sufficient for getting going initially.

6. If the board is to be self-powered then one of the following two options should be
used:

a) Optional. If a mains power wall adapter is to be used, plug it into the board with
the adapter switched off and then switch on the adapter. This prevents voltage
ringing in the cable. The plug from the mains power adapter should have
+5V power on the outside of the pin and ground on the inside of the pin.
When the plug is inserted in the jack, power from USB is disconnected by the
jack.

b) Optional. If a PC hard disk power connector is to be used, plug it into the board
with the power source switched off and then switch on the power source. The PC
hard disk drive power connector is intended for use of the board inside a PC and
the board should be mounted securely using the four corner holes and insulating

 ZestSC1 User Guide

 CONFIDENTIAL Page 7 of 57

standoffs in a position where it cannot touch any other items such as chassis,
boards or cables.

7. Plug the USB cable into ZestSC1 and the host computer or USB hub. It does not
matter whether the host computer is switched on or off. The cable has different
connectors at each end to ensure it is plugged in the correct way round.

8. If the host computer is switched off then switch it on now.

9. The host computer will detect a new USB device and request the software driver.

10. Install the software driver – see section 6.2 Software.

6.2.1 Headers

The connectors and headers on the board are listed below. Their approximate positions
are shown in Figure 1.

Figure 1. Approximate Positions of Connectors and Headers

Pin numbers zig-zag along the two-row header as shown in Figure 2.

Figure 2. Zig-Zag Pin Numbering of Two-Row Header

J2

J6

J3 J1

J5

J7

 J4

1 2

4 3

Orange Tree Technologies

Page 8 of 57

Unless otherwise stated, pin 1 is indicated on the PCB by the figure ‘1’.

J1 USB B connector

J2 Test header for monitoring USB controller signals:

Pin USB Controller Signal
1 Port E bit 0
2 Port E bit 1
3 Port E bit 2
4 BreakPoint

J3 JTAG header for configuring FPGA:

Pin FPGA JTAG Pin
1 VCC 2.5V
2 Ground
3 TCK
4 TDO
5 TDI
6 TMS

 ZestSC1 User Guide

 CONFIDENTIAL Page 9 of 57

J4 User I/O Header
 IO pins are connected directly to the FPGA. See UCF for FPGA pin connections.

Signal Pin Pin Signal
5V 1 2 3.3V

Ground 3 4 Ground
Ground 5 6 Ground
Ground 7 8 Ground

IO0 9 10 IO1
IO2 11 12 IO3
IO4 13 14 IO5
IO6 15 16 IO7
IO8 17 18 IO9
IO10 19 20 IO11
IO12 21 22 IO13
IO14 23 24 IO15
IO16 25 26 IO17
IO18 27 28 IO19
IO20 29 30 IO21
IO22 31 32 IO23
IO24 33 34 IO25
IO26 35 36 IO27
IO28 37 38 IO29
IO30 39 40 IO31
IO32 41 42 IO33
IO34 43 44 IO35
IO36 45 46 IO37
IO38 47 48 IO39
IO40 49 50 IO41
IO42 51 52 IO43
IO44 53 54 IO45

CLK_IO_P 55 56 CLK_IO_N
IO46 57 58 Ground

Ground 59 60 Ground
Ground 61 62 Ground
Ground 63 64 Ground

J5 2.5 mm power jack for mains adapter

Pin Signal
Centre socket contact - 1 Ground

Switched input pin - 2 VBUS (5V from USB)
Outer socket contact - 3 3.5V to 5.5V POWER IN

When a plug is not inserted, pin 2 VBUS is connected to the jack output pin 3.
When a plug is inserted, the outer contact is isolated from pin 2 and connects the plug
outer contact to the jack output pin 3.

Orange Tree Technologies

Page 10 of 57

J6 Power source

Connect Pins Power Source
1-2 Power jack J5 or USB
2-3 Hard disk drive connector J7

J7 PC hard disk power connector

Pin Signal
1 No connect
2 Ground
3 Ground
4 5V

6.3 Software

The software driver package includes a Windows Installer utility to perform the
installation. To install the software, run the setup.exe utility from the CD and follow the
on-screen instructions. The software will be installed in the following directory structure:

Directory Contents
Docs Product documentation including the User Guide (this document)
Driver Driver binary and installation (INF) files
Examples Examples for host and FPGA code showing how to use various

features of the ZestSC1
Inc Host support library C include file
Lib Host support library C static library file
Utils Contains utilities to set the card ID on a board (setid.exe) and

convert FPGA configuration files to C header files (Bit2C.exe)
Verilog Verilog FPGA files for interfacing to the USB controller and SRAM
VHDL VHDL FPGA files for interfacing to the USB controller and SRAM

 ZestSC1 User Guide

 CONFIDENTIAL Page 11 of 57

7 Description
The block diagram of ZestSC1 is shown in Figure 3. It is a desktop board with a Xilinx
Spartan-3 FPGA with up to one million system gates. The FPGA is connected to a host
computer over High Speed USB (12 or 480Mbits/sec) for configuration and data
communication. A synchronous SRAM of either 1 or 8 MBytes stores application data, and
a 32x2 0.1” pitch header can be used for I/O.

Figure 3. ZestSC1 Block Diagram

7.1 USB

ZestSC1 is a USB device and needs to be connected to a USB host computer. It can draw
power from the USB cable or from a mains power adapter, according to the position of
J6. The USB port may be either Full speed 12Mbps (USB V1.1 or 2.0) or High speed
480Mbps (USB V2.0).

The USB controller is the Cypress EZ-USB FX2 USB Microcontroller [1]. It includes an
8051 microcontroller that is used for enumeration and board management firmware. The
8051 address and data buses are connected to the FPGA. The USB controller is
implemented entirely in hardware. The ZestSC1 comes fitted with an EEPROM containing
firmware to communicate with the supplied host driver. It is strongly recommended that
this firmware is not modified and that the supplied host driver and FPGA cores are used
for all designs. Failure to do so may result in damage to the hardware.

The main method for data communication between the FPGA and USB is by the FX2’s
FIFO interface. This can operate with its data bus 8 or 16 bits wide and at a frequency of
48MHz giving a maximum burst data rate of 96 MBytes/sec.. It is used for configuring
the FPGA from the host computer and for data communications between the FPGA and
host computer. The FX2 Serial Interface Engine SIE, which controls USB transfers, uses

USB
USB

Controller

FPGA
Spartan-3

1000

ZBT SRAM
8MBytes

49 pins of user I/O on 0.1” header

8 LEDs

16 18

49
8

Streaming

8 Registers

8 Flags

Interrupt

Orange Tree Technologies

Page 12 of 57

the FIFO interface. The FIFO interface can be controlled by either an internal master in
the FX2 or an external master in the FPGA. The internal master is a programmable state
machine called the General Programmable Interface or GPIF. Conversely, when the FIFO
interface is controlled by the FPGA it is in Slave FIFO mode.

There are also general purpose data ports connected between the FX2 and the FPGA.
These are available for general communications (flags) or for specific purposes as
described below. For more detailed descriptions of signals see [1].

FX2 Port Port signal
number

Function or Signal Name

0 FPGA configuration CS_n

1 FPGA configuration WRITE_n

2 C_PA2/SLOE – slave output enable

3 C_PA3/WU2 – 8051 wakeup

4 C_PA4/FIFOADR0 - slave FIFO address bit 0

5 C_PA5/FIFOADR1 – slave FIFO address bit 1

6 C_PA6/PKTEND – slave packet end

A

7 C_PA7/FLAGD/SLCS_n – slave FIFO output status flag/slave
chip select

B 0-7 FIFO interface data bits 0-7

C 0-7 General purpose bi-directional pins

D 0-7 FIFO interface data bits 8-15

0 Enable Power – active low power-on for FPGA, SRAM , etc,
which are powered off during USB enumeration
(enumeration is the USB initialisation following connection to
a computer)

1 Enable SRAM – active low chip enable for SRAM, can be
disabled to conserve power if SRAM is not used

2 VBUS monitor – monitors VBUS (5V from USB) so 8051 can
remove internal pull-up on D+ when VBUS is removed in
Full Speed mode (the pull-up is permanently removed in
High Speed mode anyway) and the board is powered from
J5 or J7

3 C_PE3

4 C_PE4

5 FPGA configuration PROG_n

6 FPGA configuration INIT_n

E

7 FPGA configuration DONE

 ZestSC1 User Guide

 CONFIDENTIAL Page 13 of 57

The GPIF also has 6 Ready input signals and 6 Control output signals for general purpose
use, and these are all connected to the FPGA. CTL3 and 4 are connected to FPGA
configuration CS_n and WRITE_n. These configuration signals are also connected to Port
C bits 0 & 1, but for high speed configuration the GPIF Control signals are used. In Slave
FIFO mode some of the Ready and Control signals become FIFO control signals. See table
above for Port A signals and table below for Ready and Control signals that are used in
Slave FIFO mode.

GPIF Mode Slave FIFO Mode

RDY0 (I) SLRD – slave read (I)
RDY1 (I) SLWR – slave write (I)
RDY2 (I)
RDY3 (I)
RDY4 (I)
RDY5 (I)
CTL0 (O) FLAG A (O)
CTL1 (O) FLAG B (O)
CTL2 (O) FLAG C (O)
CTL3 (O)
CTL4 (O)
CTL5 (O)
(I) means FX2 input and (O) means FX2 output

7.1.1 Communications with Host

The FPGA uses five means of communication with the FX2 and hence the host computer.

• GPIF mode is used for bulk transfers of FPGA configuration/readback data.
Configuration/readback transfers require two endpoints, one for writing and one
for reading, making a total of two endpoints. The GPIF has a maximum of four
programmable waveforms in its state machine.

• Slave FIFO mode is used for bulk transfers of application data. Application data
transfers require two endpoints, one for writing and one for reading, making a
total of two endpoints. Transfers using the slave FIFO must be a multiple of 512
bytes in length.

• The 8051 external memory interface is used for access to application registers
within the FPGA.

• The 8 bits of Port C of the 8051 are used as general purpose, bi-directional pins.
The use of these pins is determined by the user application. They can be used as
a simple handshaking protocol, state reporting to the host, control from the host
or for any other purpose.

• There is a single interrupt line from the FPGA to the FX2 to allow the FPGA to
interrupt the host PC.

See the references [1], [2], [3], [4] and [5] for details on GPIF mode and Slave FIFO
mode.

Orange Tree Technologies

Page 14 of 57

7.1.1.1 FPGA Configuration

The GPIF mode is used for configuring the FPGA using the SelectMap port. The FX2 acts
as a master driving the FPGA CS_n, WRITE_n and data ports. Data is transferred directly
from the USB port to the GPIF master and on to the FPGA using the Auto Out method
detailed in [3].

7.1.1.2 Streaming Data Transfer

The slave FIFO mode is used to stream data between the host and FPGA. The supplied
FPGA files include a reference design to illustrate use of the slave FIFO interface to
achieve peak transfer rates of 96Mbytes/s and sustained transfer rates only limited by
the host PC. The reference design exposes the following signals:

User_CLK : out std_logic;
User_RST : out std_logic;
User_StreamBusGrantLength : in std_logic_vector(11 downto 0);
User_StreamDataIn : out std_logic_vector(15 downto 0);
User_StreamDataInWE : out std_logic;
User_StreamDataInBusy : in std_logic;
User_StreamDataOut : in std_logic_vector(15 downto 0);
User_StreamDataOutWE : in std_logic;
User_StreamDataOutBusy : out std_logic;

Or, in Verilog:

output User_CLK,
output User_RST,
input [11:0] User_StreamBusGrantLength,
output User_StreamDataIn,
output User_StreamDataInWE,
input User_StreamDataInBusy,
input [15:0] User_StreamDataOut,
input User_StreamDataOutWE,
output User_StreamDataOutBusy,

User_CLK is a clock output from the core. All signals from the core are synchronous to
this clock. All signals to the core should also be synchronous to this clock.

User_RST is an active high global reset output from the core. The user design should
use this to reset its state.

User_StreamBusGrantLength is used by the core to fairly arbitrate between transfers to
and from the host. The bus between the FX and the FPGA is a 16 bit bidirectional
interface and transfers take place in 512 byte blocks (256 sixteen bit words). The FPGA
grants the bus to reads or writes for the number of cycles specified by this input before
reversing the direction. This is done to avoid deadlock where the host wishes to write to
the FPGA and the FPGA wishes to write to the host and to fairly balance reads and writes.
Since a bus turnaround takes a number of cycles, this value is a trade-off between peak
bandwidth (higher with a larger grant length) and turnaround latency (lower with a lower
value). Therefore, for applications which transfer large blocks in one direction before

 ZestSC1 User Guide

 CONFIDENTIAL Page 15 of 57

reversing the data flow, select a large value (256 or greater). For applications which
alternate transferring short blocks in either direction, select a short value (such as 16).

User_StreamDataIn is the data stream from the host to the FPGA. The active high
User_StreamDataInWE signal indicates when the data is valid. If the user application
sets User_StreamDataInBusy high then the host will be blocked and no data will be sent
to the user application.

User_StreamDataOut is the data stream from the FPGA to the host. The
User_StreamDataOutWE signal should be set high in the same cycle as the valid data. If
the User_StreamDataOutBusy signal is high then the user application should not attempt
to transfer any more data. The core contains a short FIFO which can accept 4 transfers
after User_StreamDataOutBusy goes high allowing time for the user application to
respond.

Figure 4. Host to FPGA Streaming Cycles

Figure 5. FPGA to Host Streaming Cycles

USER CLK

USER StreamDataOut

USER StreamDataOutBusy

D0

USER StreamDataOutWE

D2 D1

USER CLK

USER StreamDataIn

USER StreamDataInBusy

D0

USER StreamDataInWE

D2 D1

Orange Tree Technologies

Page 16 of 57

7.1.1.3 Register Reads and Writes

The FX2 external bus is connected to the FPGA allowing memory mapped accesses to
registers implemented inside the FPGA. The supplied FPGA files include a reference
design to illustrate use of registers. The reference design exposes the following signals:

User_CLK : out std_logic;
User_RST : out std_logic;
User_RegAddr : out std_logic_vector(15 downto 0);
User_RegDataIn : out std_logic_vector(7 downto 0);
User_RegDataOut : in std_logic_vector(7 downto 0);
User_RegWE : out std_logic;
User_RegRE : out std_logic;

Or, in Verilog:

output User_CLK,
output User_RST,
output [15:0] User_RegAddr,
output [7:0] User_RegDataIn,
input [7:0] User_RegDataOut,
output User_RegWE,
output User_RegRE

User_CLK is a clock output from the core. All signals from the core are synchronous to
this clock. All signals to the core should also be synchronous to this clock.

User_RST is an active high global reset output from the core. The user design should
use this to reset its state.

User_RegAddr is the zero based address of the read or write access. Note that registers
between 0x0000 and 0x2000 are not available on boards fitted with the Cypress FX2LP
USB controller (part number CY68013A).

User_RegDataIn is the data from the host to the FPGA during a register write.

User_RegDataOut is the data from the FPGA to the host during a register read.

User_RegWE is an active high write strobe. This strobe will be high for a single cycle
simultaneously with the address and data.

User_RegRE is an active high read strobe. The user application should return the data on
the rising edge of the clock when this strobe is high.

 ZestSC1 User Guide

 CONFIDENTIAL Page 17 of 57

Figure 6. Register read and write accesses

7.1.1.4 User Signals

The 8 user signals between the FPGA and FX2 can be used for any application defined
purpose. However, care must be taken to set the direction of the FX2 Port C signals such
that the FX2 and FPGA do not drive against each other at any time. Failure to do so may
result in damage to the hardware.

7.1.1.5 Host Interrupt

The user core exposes a single signal to interrupt the host.

User_Interrupt : in std_logic;

Or, in Verilog:

input User_Interrupt

Setting User_Interrupt high for a single cycle will cause an interrupt on the host which
can be trapped by the user application (ZestSC1WaitForInterrupt() function).

7.2 FPGA

The FPGA is from the Xilinx Spartan-3 family and is either the XC3S1000-4 or XC3S400-
4, according to which was ordered. The package is the FT256 256-pin fine pitch thin BGA.

There are three main devices attached to the FPGA:

• USB controller

• SRAM – 512K x 18 or 4M x 18 of synchronous SRAM

USER CLK

USER RegAddr

USER RegWE

A0

USER RegDataIn

A1

USER RegDataOut

USER RegRE

D0

D1

Orange Tree Technologies

Page 18 of 57

• I/O – 49 I/O signals, 2 of which can be a differential pair clock input. The I/O
signals FPGA banks have 51 ohm impedance reference resistors for Spartan DCI
buffers.

There are also 8 LEDs D2-9 that share IO signals 0, 1, & 41-46 respectively. These are
driven active low.

For signal allocations to FPGA pins, see the UCF supplied with the board.

The FPGA is configured from the USB in Slave Parallel mode. Alternatively it can be
configured using JTAG via header J3. The JTAG header on the board is 0.1 inch pitch with
pins assigned to align with the Xilinx Parallel Cable Fly Leads. The download cable should
be the Xilinx Parallel Cable IV with Parallel Cable Flying Leads. Note that the JTAG
reference voltage on pin 1 of J3 is 2.5V.

When using the Xilinx Synthesis Tools XST, the following XST synthesis and
implementation properties should be set.

Synthesis Properties – Xilinx Specific Options
 Pack I/O Registers into IOBs YES

Translate Properties
 Allow Unmatched LOC Constraints YES

Map Properties
 Allow Logic Optimisation Across Hierarchy YES
 Perform Timing Driven Packing and Placement YES

Generate Programming File Properties – Configuration Options
 Unused IOB Pins Pull Up

Generate Programming File Properties – Startup Options
 Drive Done Pin High YES

7.3 Memory

The memory is NoBL (No Bus Latency, the same as ZBT or Zero Bus Turnaround)
pipelined synchronous SRAM from Cypress. The device may be either the 512k x 18 or
4M x 18, according to which was ordered. These devices are respectively the
CY7C1356B-166AC [6] and CY7C1472V33-167AC [7].

The SRAM chip enable pin CE1_n is connected to the FX2 Port E bit 1 so that the FX2 can
control whether the SRAM is enabled to minimise power consumption. The pin CE1_n has
a pull-up so that the SRAM is disabled unless the FX2 enables it by driving this pin low.

MODE, ZZ, CEN_n and CE3_n are all pulled low permanently. CE2 is pulled high
permanently.

All other signals are connected to the FPGA, see the UCF for pin connections. The logic
core supplied with the board includes interface logic for the SRAM. The user interface is
as below.

 ZestSC1 User Guide

 CONFIDENTIAL Page 19 of 57

USER_SRAM_A: in std_logic_vector(22 downto 0); -- 23-bit address
USER_SRAM_W: in std_logic; -- write strobe active

-- high
USER_SRAM_R: in std_logic; -- read strobe active

-- high
USER_SRAM_DR_VALID: out std_logic; -- read data valid strobe

-- active high
USER_SRAM_DW: in std_logic_vector(17 downto 0); -- 18-bit data bus for

-- writing to SRAM
USER_SRAM_DR: out std_logic_vector(17 downto 0); -- 18-bit data bus for

-- reading from SRAM

Or, in Verilog:

input [22:0] USER_SRAM_A, // 23-bit address
input USER_SRAM_W, // write strobe active

// high
input USER_SRAM_R, // read strobe active

// high
output USER_SRAM_DR_VALID, // read data valid strobe

// active high
input [17:0] USER_SRAM_DW, // 18-bit data bus for

// writing to SRAM
output [17:0] USER_SRAM_DR // 18-bit data bus for

// reading from SRAM

The Pipelined ZBT SRAM device takes 2 clock cycles for a write and 2 clock cycles for a
read. This logic core has one extra pipeline stage in the write path (giving 3 clock cycles)
and two extra pipeline stages in the read path (giving 4 clock cycles). Figure 7 shows the
signal waveforms at the user interface.

Figure 7. ZBT SRAM Write and Read Cycles

For write cycles the user logic drives the write strobe high and the write address and data
in the same clock cycle. The logic core registers all command and data signals and delays

USER CLK

USER SRAM A

USER SRAM W

USER SRAM R

USER SRAM DW

WRITE READ

USER SRAM DR VALID

USER SRAM DR

DATA

DATA

Orange Tree Technologies

Page 20 of 57

the data by 2 further clocks as required by the ZBT SRAM. Byte write strobes are not
implemented.

For read cycles the user logic drives the read strobe high and the read address in the
same clock cycle, and the logic core registers all these signals. Valid data is returned to
the user code 4 clocks after the user code drives the read strobe high. The valid data is
accompanied by the active high data valid strobe. When the data valid strobe is high then
the read data should be registered by the user code.

All accesses are single accesses requiring a valid address with each access, burst
accesses are not implemented. There is no difference in bandwidth between single and
burst accesses.

The SRAM clock is driven from the FPGA to the SRAM. This must arrive at the SRAM
before the command and write data by the SRAM hold time of at least 0.5nS. This is
achieved by using a DCM to generate an SRAM clock about 2nS in advance of the User
clock and clocking all signals in IOB's. The SRAM clock is used only as an output to the
SRAM (via FDDR in IOB) and does not clock any signals in the FPGA.

The data tri-state signal flip-flop is placed in each data IOB to minimize bus contention
when changing from write to read or vice versa (see next paragraph). This is achieved by
setting the Synthesis property “Pack I/O Registers into IOBs” to YES.

ZBT Zero Bus Turnaround means that there does not have to be an idle cycle between
different types of cycles (i.e. writes and reads). The direction of the data bus therefore
needs to be able to change just after the start of a clock cycle from one device (e.g.
SRAM) driving it to the other device (e.g. FPGA) driving it. Because of differences in turn
on and turn off times of the different devices' data bus drivers there will inevitably be
some bus contention. However, as [8] shows, bus contention of a few nS is easily
tolerable.

7.4 IO

J4 provides user I/O from the FPGA, see the Headers section for the names of signals
connected to the pins and the UCF for connections to the FPGA. J4 is a 32 pins x 2 rows
0.1 inch pitch header.

49 pins are connected directly to the FPGA for user I/O. Two of these signals (CLK_IO_P
and CLK_IO_N) are connected to clock input pins on the FPGA. They can have a 100 ohm
parallel termination resistor across them at the FPGA for a differential clock – see section
Build Options. Also signals IO2-45 may be used as differential pairs IO2 & 3, IO4 & 5, …,
IO44 & 45, but they do not have termination resistors on the board.

IO0, 1, 41-46 are also connected to LED’s D2 to D9 respectively – see section LED’s. An
LED is switched on when the IO line is low, and requires 2mA to be drawn by the IO line
for full brightness.

There are 6 ground pins at one end of J4 and 7 ground pins at the other end. Pin 1 is 5V
power output and pin 2 is 3.3V power output, both via resettable 1.5A fuses. This power
can be used for example to power a daughter card plugged onto J4. The 3V3 is from the

 ZestSC1 User Guide

 CONFIDENTIAL Page 21 of 57

power switch so is available only after the FX2 has enabled the power switch using its
Port E bit 0.

The FPGA I/O banks connected to J4 are 3V3. They are NOT 5V tolerant. However 5V
signals can be connected to J4 via 180 ohm series resistors to limit the current into each
FPGA pin to less than 10mA.

As a build option, DCI reference resistors can be fitted for matching the characteristic
impedance of the IO lines for DCI buffers. The FPGA pins for the reference resistors are
the same as IO pins 2, 3, 44 & 45. Hence if the resistors are fitted then these IO pins
cannot be used for I/O. Also the FPGA pins for two of the reference resistors are the
same as pins connected to LED’s D7 and D8. Hence if the resistors are fitted then these
LED’s are removed.

7.5 LEDs

There is one LED for the FPGA configuration DONE signal, 4 LEDs indicating power supply
status, and 8 LEDs connected to the FPGA. These latter 8 LEDs are also connected to IO
signals as shown below. Figure 8 shows the positions of the LEDs.

LED Signal

1 DONE

2 IO0

3 IO1

4 IO41

5 IO42

6 IO43

7 IO44

8 IO45

9 IO46

10 5V

11 3.3V

12 Switched 3.3V

13 2.5V

LED’s 2-9 are driven active low. An LED is switched on when the IO line is low, and
requires 2mA to be drawn by the IO line for full brightness.

As a build option, DCI reference resistors can be fitted for matching the characteristic
impedance of the IO lines for DCI buffers. The FPGA pins for two of the reference
resistors are the same as pins connected to LED’s D7 and D8. Hence if the resistors are
fitted then these LED’s are removed.

Orange Tree Technologies

Page 22 of 57

Figure 8. Approximate Positions of LEDs

7.6 Clocks

The FPGA has two fixed frequency clock inputs of 48MHz each and one clock input from
the IO header. The FPGA’s internal DCM’s can be used to synthesise other clock
frequencies from 1.5MHz to 280MHz.

The 48MHz clock for the Slave FIFO Interface connecting the USB controller and the FPGA
is driven on separate PCB tracks from a crystal oscillator to the USB controller and to the
FPGA. It is connected to FPGA global clock pin GCLK0. It is also used for the FPGA
configuration clock CCLK.

The USB controller 8051 clock is output from the USB controller to the FPGA global clock
pin GCLK1. The frequency can be set to 12MHz, 24MHz or 48MHz by the 8051, and the
8051 firmware supplied with the ZestSC1 sets it to 48MHz. The logic cores supplied with
the board use this USB controller 8051 clock as the main clock. Note this is a separate
clock to the 48MHz GPIF clock described in the paragraph above. The host interface logic
core includes FIFO’s to interface between the two clock domains of the USB controller
8051 clock and the Slave FIFO Interface clock.

The IO clock signals CLK_IO_P and CLK_IO_N are connected to FPGA global clock pins
GCLK6 and GCLK7 respectively. They can be configured as single-ended or differential
clock inputs.

7.7 Power

The board can be either bus-powered or self-powered. Bus-powered means powered
entirely from the USB cable connected to the host computer. If the board is to be bus-
powered then the USB port must be a high power (500mA) port. The DC/DC
converters on the board have been chosen for their very high efficiency of approximately
90%, even at low currents. This is important when the board is bus-powered as only

D2

J1

J5

J7

 J4

D3 D4 D5 D9 D8 D7 D6

D10 D11 D13 D12 D1

 ZestSC1 User Guide

 CONFIDENTIAL Page 23 of 57

2.5W (500mA @ nominal 5V) is available from USB. The following table shows the typical
quiescent power consumption of the board when connected to a USB host. The remaining
power from the USB 2.5W after allowing for 10% loss in the power supplies is available
for operating power and is also shown in the table below.

FPGA and Memory Quiescent Power (W) Available Operating Power
(W)

400 and 1MB 1.35 1.0

1000 and 1MB 1.40 1.0

1000 and 8MB* 1.80 0.6

To minimise power consumption then the following may be done:

• If the SRAM is not required then drive the SRAM clock high or low.

• Do not use internal pull-ups or pull-downs on the FPGA IO pins.

For extra power there are two power connectors for external power supplies to make the
board self-powered. One is J5, which is a 2.5mm power jack for connection to a mains
power wall adapter. This should be switch mode with low ripple and have an output
voltage between 3.5V and 5.5V (nominally 4.5V or 5.0V), an output current of at least
1A, and a female plug inner diameter of 2.5mm. The plug from the wall adapter
should have +5V power on the outside of the pin and ground on the inside of
the pin. When the plug is inserted in the jack, power from USB is disconnected by the
jack.

There are 3 resettable fuses fitted to the board at the following points:

• 5V power input from all sources
• 5V power output to I/O header
• 3.3V power output to I/O header

All the fuses are resettable 1.5A fuses. If a fuse trips then disconnect power, remove the
fault and wait for the fuse to cool down before reconnecting the power.

Power should be switched off when inserting the mains adapter plug and when changing
the position of J6. This is to avoid current surges and voltage ringing in the mains
adapter wire.

The other power connector is a PC hard disk drive power connector for connecting to a
power cable found inside a PC. J6 is used for selecting either this connector or the power
jack/USB power. J6 should be moved only when all power is off. The PC hard disk
drive power connector is intended for use of the board inside a PC and the board should
be mounted securely using the four corner holes and insulating standoffs in a position
where it cannot touch any other items such as chassis, boards or cables.

Orange Tree Technologies

Page 24 of 57

7.8 Build Options

The following modifications can be made to the board by arrangement with Orange Tree
Technologies.

1. DCI reference resistors for the IO lines. DCI buffers require reference
resistors for matching to the characteristic impedance of the IO lines. On ZestSC1
the IO lines are about 50 ohms impedance so the reference resistors are 51
ohms, being the closest standard value. The resistors are connected to the FPGA
pins connected to IO2, 3, 44 & 45, so these IO pins cannot be used if the
reference resistors are fitted. Also LED’s D7 and D8 are connected to IO44 & 45
so these LED’s are removed if the reference resistors are fitted. For the standard
build the reference resistors are not fitted (so DCI cannot be used) and LED’s D7
and D8 are fitted.

2. IO differential clock input. IO pins CLK_IO_P and CLK_IO_N are both
connected to FPGA clock input pins. They can be used either as separate single
ended clocks or general purpose IO or as one differential clock input. A 100 ohm
resistor can be fitted at the FPGA pins to terminate a differential clock input. For
the standard build this resistor is not fitted.

 ZestSC1 User Guide

 CONFIDENTIAL Page 25 of 57

8 Using the Host Library
The ZestSC1 host support software consists of a system driver and a host library to allow
access to the board. The system driver is installed automatically during installation of the
ZestSC1 support package. The host library consists of a static C library file (.lib file) and
an associated C header file (.h file).

To use the ZestSC1 support library in your own code, you must include the header file at
the start of your program. For example:

#include <zestsc1.h>

The header file must be in your compiler include path. For details of how to set the
include path, refer to your compiler manuals.

Your program must then be linked with the ZestSC1.lib library file. For details of how to
link additional static libraries, refer to your compiler manuals. You must also link in the
standard library ‘setupapi.lib’ (available in the Windows Platform SDK from Microsoft)
which is used by the ZestSC1 host library internal code.

Orange Tree Technologies

Page 26 of 57

9 Host Utilities
A number of utilities are provided with the ZestSC1 support library. These can be found
in the Utils sub-directory of the support package installation.

9.1 Bit2C

Bit2C.exe converts Xilinx .bit FPGA configuration files to C header files. The C header file
contains a static array definition with the raw data from the .bit file. This array can be
passed to the ZestSC1RegisterImage function to obtain a handle suitable for the
ZestSC1Configure function. In this way, .bit files can be linked into your application
executable to avoid having multiple files.

For example:

Bit2C config.bit array.c

This will convert the config.bit file generated by the Xilinx place and route tools into a
file called array.c which contains definitions of the variables arrayLength and
arrayImage. You can then configure the FPGA by calling the following functions:

extern void *arrayImage;
extern unsigned long arrayLength;
ZESTSC1_IMAGE Image;
ZESTSC1_HANDLE Handle;

/* Register the FPGA configuration image */
ZestSC1RegisterImage(arrayImage, arrayLength, &Image);

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);
/* Configure the FPGA from the image */
ZestSC1Configure(Handle, Image);

9.2 SetID

Each ZestSC1 card contains a non-volatile ID to allow identification of the card in a
system with multiple ZestSC1’s attached. The ID is passed to the ZestSC1OpenCard
function to obtain a handle to the card.

For example, a system may consist of a ZestSC1 card attached to a camera and a second
ZestSC1 connected to a monitor. Setting the ID of the first card to 1 and the second
card to 2 will allow the host program to distinguish between the two cards.

SetID.exe programs the ID of a card from the command line. Run SetID.exe from a
command prompt and follow the on-screen instructions.

 ZestSC1 User Guide

 CONFIDENTIAL Page 27 of 57

10 Examples
The ZestSC1 Support package contains a number of examples to illustrate the use of the
ZestSC1 and its Host Support Library. The examples are located in the Examples sub-
directory of the ZestSC1 installation directory. Each example consists of a host program
and a Xilinx XST VHDL or Verilog project.

Examples 2 and 4 also contain ModelSim testbenches to illustrate how the various
interfaces can be simulated before implementation.

Example1 shows how to configure the FPGA from a .bit file generated by the Xilinx place
and route tools. The .bit file flashes the LEDs on the board in sequence.

Example2 shows how to use the high-speed streaming interface on the ZestSC1 by
measuring data transfer rates between the FPGA and the host in either direction. The
VHDL/Verilog code implements an infinite data sink and an infinite data source to
illustrate use of the VHDL/Verilog support library.

Example3 shows how to use the low-speed control interface on the ZestSC1 by reading
and writing a memory-mapped register and reading and writing the single bit signals.
The VHDL/Verilog code implements a number of read/write registers and a loop-back of 4
input signals to 4 output signals.

Example4 shows how to use the SRAM on the ZestSC1. The VHDL/Verilog code
implements a DMA engine between the USB streaming port and the SRAM allowing the
host to read and write blocks of data.

Orange Tree Technologies

Page 28 of 57

11 Host Library Function Reference

ZestSC1CountCards

ZESTSC1_STATUS ZestSC1CountCards(unsigned long *NumCards,

unsigned long *CardIDs,
unsigned long *SerialNumbers,
ZESTSC1_FPGA_TYPE *FPGATypes);

Parameters

NumCards Pointer to location to receive total number of ZestSC1 cards in

the system.
CardIDs Pointer to buffer to receive list of card IDs in the system. May

be NULL.
SerialNumbers Pointer to buffer to receive list of card serial numbers in the

system. May be NULL.
FPGATypes Pointer to buffer to receive list of FPGA types fitted to cards in

the system. May be NULL.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver

Description

ZestSC1CountCards can be used to determine the number and types of cards fitted in a
system. Each card can be identified in 3 ways: by a user-programmable card ID, by a
factory set unique serial number and by the type of FPGA fitted to the card.

CardIDs should point to the start of an array which will be filled in with the user
programmable card IDs. See ZestSC1SetCardID for details of how to set this ID. This
ID should be passed to ZestSC1OpenCard to obtain a handle for accessing the selected
ZestSC1 card.

SerialNumbers should point to the start of an array which will be filled in with the factory
set, unique serial number of the cards in the system.

FPGATypes should point to the start of an array which will be filled in with the type of
FPGA fitted.

Each of these arrays should be large enough to receive values for each of the cards in the
system. Any or all of them can be NULL if the information is not required. A call to
ZestSC1CountCards can be made with NULL pointers to determine the size of the
required array as follows:

 ZestSC1 User Guide

 CONFIDENTIAL Page 29 of 57

unsigned long NumCards;
unsigned long *CardIDs;

/* Get the number of cards in the system */
ZestSC1CountCards(&NumCards, NULL, NULL, NULL);

/* Allocate a buffer to receive the card IDs */
CardIDs = malloc(sizeof(unsigned long) * NumCards);

/* Fill in the buffer with the card IDs */
ZestSC1CountCards(&NumCards, CardIDs, NULL, NULL);

Orange Tree Technologies

Page 30 of 57

ZestSC1OpenCard

ZESTSC1_STATUS ZestSC1OpenCard(unsigned long CardID,

ZESTSC1_HANDLE *Handle);

Parameters

CardId ID of card to open. See ZestSC1CountCards.
Handle Pointer to receive the handle of the open card. This handle is

used to identify the card in future calls to the ZestSC1 library.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver
ZESTSC1_OUT_OF_MEMORY Not enough memory to complete the

requested operation
ZESTSC1_ILLEGAL_CARD_ID The requested card ID does not correspond

to any devices in the system

Description

ZestSC1OpenCard is used to obtain a handle to a card in the system for future calls to
ZestSC1 library functions. The card is identified by a user-programmable ID. See
ZestSC1CountCards for details of how to find the IDs of cards in the system and
ZestSC1SetCardID for details of how to set this ID.

For example:

ZESTSC1_HANDLE Handle;

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Configure the FPGA on the open card */
ZestSC1ConfigureFromFile(Handle, “test.bit”);

ZestSC1CloseCard should be called to free the card before the program exits.

 ZestSC1 User Guide

 CONFIDENTIAL Page 31 of 57

ZestSC1GetCardInfo

ZESTSC1_STATUS ZestSC1GetCardInfo(ZESTSC1_HANDLE Handle,

ZESTSC1_CARD_INFO *Info);

Parameters

Handle Handle of open ZestSC1 card. See ZestSC1OpenCard.
Info Pointer to structure to receive information about the card.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle
ZESTSC1_TIMEOUT Operation timed out

Description

ZestSC1GetCardInfo can be used to obtain information about an open card. The
ZESTSC1_CARD_INFO structure is defined as follows:

typedef struct
{
 unsigned long CardID;
 unsigned long SerialNumber;
 ZESTSC1_FPGA_TYPE FPGAType;
 Unsigned long MemorySize;
 unsigned long TimeOut;
} ZESTSC1_CARD_INFO;

CardID is a user-programmable ID for the card. See ZestSC1CountCards for details of
how to find the IDs of cards in the system and ZestSC1SetCardID for details of how to
set this ID.

SerialNumber is a unique, factory-set serial number for the card.

FPGAType gives the type of FPGA fitted to the card.

MemorySize gives the number of bytes of SRAM fitted to the card.

TimeOut is the length of time, in milliseconds, that blocking operations should wait for
before returning ZESTSC1_TIMEOUT. Time outs allow the user program to recover
cleanly when communication with the card fails. See ZestSC1SetTimeOut for details of
how to set this time.

For example:

ZESTSC1_HANDLE Handle;

Orange Tree Technologies

Page 32 of 57

ZESTSC1_CARD_INFO Info;

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Obtain information about the card */
ZestSC1GetCardInfo(Handle, &Info);

/* Perform action based on FPGAType */
if (Info.FPGAType==ZESTSC1_XC3S400)
 ZestSC1ConfigureFromFile(Handle, “file400.bit”);
else if (Info.FPGAType== ZESTSC1_XC3S1000)
 ZestSC1ConfigureFromFile(Handle, “file1000.bit”);
else
 printf(Illegal FPGA type\n”);

 ZestSC1 User Guide

 CONFIDENTIAL Page 33 of 57

ZestSC1SetTimeOut

ZESTSC1_STATUS ZestSC1SetTimeOut(ZESTSC1_HANDLE Handle,

unsigned long MilliSeconds);

Parameters

Handle Handle of open ZestSC1 card. See ZestSC1OpenCard.
MilliSeconds Length to required timeout in milliseconds.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle

Description

ZestSC1SetTimeOut can be used to set the length of time, in milliseconds, that
blocking operations should wait for before returning ZESTSC1_TIMEOUT. Time outs
allow the user program to recover cleanly when communication with the card fails. The
default length of the time out is 10 seconds.

For example:

ZESTSC1_HANDLE Handle;

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Set the time out to 20 seconds */
ZestSC1SetTimeOut(Handle, 20000);

/* Perform action and time out if card doesn’t
 respond within 20 seconds */
if (ZestSC1ConfigureFromFile(Handle, “test.bit”)==ZESTSC1_TIMEOUT)
 printf(“Failed to configure FPGA – time out\n”);

Orange Tree Technologies

Page 34 of 57

ZestSC1SetCardID

ZESTSC1_STATUS ZestSC1SetCardID(ZESTSC1_HANDLE Handle,

unsigned long CardID);

Parameters

Handle Handle of open ZestSC1 card. See ZestSC1OpenCard.
CardID Value of new card ID.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver
ZESTSC1_TIMEOUT Operation timed out

Description

ZestSC1SetCardID can be used to set the user-programmable ID of a card in the
system. This ID is then used to identify the card in future calls to ZestSC1OpenCard.

The card ID is a useful way to allow software to be written in a platform independent
way. For example, suppose a system has 3 cards with different peripherals attached to
the front panel connector. The card ID can be set on each card to allow the software to
identify the cards based on the attached peripherals. A second copy of the system can
be constructed with the same set if card IDs so the software can be written so that it runs
on either copy of the system.

For example:

ZESTSC1_HANDLE Handle;

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Set card ID to 23 */
ZestSC1SetCardID(Handle, 23);

/* Close the card */
ZestSC1CloseCard(Handle);

/* Re-open the card but with ID of 23 */
ZestSC1OpenCard(23, &Handle);

 ZestSC1 User Guide

 CONFIDENTIAL Page 35 of 57

ZestSC1CloseCard

ZESTSC1_STATUS ZestSC1CloseCard(ZESTSC1_HANDLE Handle);

Parameters

Handle Handle of open ZestSC1 card to close. See

ZestSC1OpenCard.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle
ZESTSC1_TIMEOUT Operation timed out

Description

ZestSC1CloseCard should be called when the specified card is finished with. It frees
resources and allows other applications to access the card.

For example:

ZESTSC1_HANDLE Handle;

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Other calls to ZestSC1 library here */

/* Close the card */
ZestSC1CloseCard(Handle);

Orange Tree Technologies

Page 36 of 57

ZestSC1RegisterErrorHandler

ZESTSC1_STATUS ZestSC1RegisterErrorHandler(

ZESTSC1_ERROR_FUNC Function);

Parameters

Function Pointer to error handler function to receive all error

notifications for this application.

Return Value

ZESTSC1_SUCCESS Function succeeded

Description

ZestSC1RegisterErrorHandler can be called to install a central error handling routine
for a user program. If any of the following ZestSC1 library function calls fail, the user
error handler will be called giving details of the failure. This mechanism means that
status codes need not be checked for every library call which simplifies code
considerably.

ZESTSC1_ERROR_FUNC is a function declared as follows:

typedef void (*ZESTSC1_ERROR_FUNC)(const char *Function,
 ZESTSC1_HANDLE Handle,
 ZESTSC1_STATUS Status,
 const char *Msg);

Function is a string containing the name of the function that failed. Handle is the handle
of the card being accessed at the time of the failure. This may be NULL for functions that
do not take a card handle. Status is the status code describing the failure and Msg is a
string describing the failure.

For example:

/* Error handler function */
void ErrorHandler(const char *Function,
 ZESTSC1_HANDLE Handle,
 ZESTSC1_STATUS Status,
 const char *Msg)
{

printf(“**** Function %s returned an error\n”, Function);
printf(“**** 0x%08lx : \"%s\"\n\n", Status, Msg);
exit(1);

}

void main(void)
{

ZestSC1RegisterErrorHandler(ErrorHandler);

 ZestSC1 User Guide

 CONFIDENTIAL Page 37 of 57

/* Other calls to ZestSC1 library here */
/* Note that the return code need not be checked
 as ErrorHandler will be called for any return values
 not equal to ZESTSC1_SUCCESS */

}

Orange Tree Technologies

Page 38 of 57

ZestSC1GetErrorMessage

ZESTSC1_STATUS ZestSC1GetErrorMessage(ZESTSC1_STATUS Status,

char **Buffer);

Parameters

Status ZestSC1 error code for which description is required.
Buffer Pointer to location to receive error code description string.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_STATUS_CODE Status code is out of range

Description

ZestSC1GetErrorMessage can be called to obtain a descriptive message for a return
status from a ZestSC1 library function. On return, the string pointed to by Buffer will be
a description of the Status return code. This is a static string and so does not need to be
freed.

For example:

ZESTSC1_HANDLE Handle;
ZESTSC1_STATUS Status;

/* Open a card with ID of 1 */
Status = ZestSC1OpenCard(1, &Handle);

if (Status!=ZESTSC1_SUCCESS)
{

char *Buffer;

ZestSC1GetErrorMessage(Status, &Buffer);
printf(“Error : %s\n”, Buffer);

}

 ZestSC1 User Guide

 CONFIDENTIAL Page 39 of 57

ZestSC1ConfigureFromFile

ZESTSC1_STATUS ZestSC1ConfigureFromFile(ZESTSC1_HANDLE Handle,

char *FileName);

Parameters

Handle Handle of open ZestSC1 card. See ZestSC1OpenCard.
FileName Name of .bit file to use to configure the FPGA.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle
ZESTSC1_NULL_PARAMETER NULL was used illegally as one of the

parameter values
ZESTSC1_FILE_NOT_FOUND File not found
ZESTSC1_FILE_ERROR Error while reading file
ZESTSC1_OUT_OF_MEMORY Not enough memory to complete the

requested operation
ZESTSC1_ILLEGAL_FILE File format is not recognised
ZESTSC1_INVALID_PART_TYPE Illegal FPGA part type
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver
ZESTSC1_TIMEOUT Operation timed out

Description

ZestSC1ConfigureFromFile can be used to configure the FPGA on the ZestSC1 card
from a .bit file generated by the Xilinx place and route software. It configures the FPGA
directly from the file on disk. Refer to ZestSC1RegisterImage and ZestSC1Configure
for details of how to configure the FPGA from configuration data in memory.

For example:

ZESTSC1_HANDLE Handle;

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Configure the FPGA from a .bit file */
ZestSC1ConfigureFromFile(Handle, “test.bit”);

Orange Tree Technologies

Page 40 of 57

Configuring the FPGA with an incorrect BIT file can damage
your hardware. Ensure that FPGA pins are connected
correctly and do not drive against peripherals on the board.

!

 ZestSC1 User Guide

 CONFIDENTIAL Page 41 of 57

ZestSC1LoadFile

ZESTSC1_STATUS ZestSC1LoadFile(char *FileName,

ZESTSC1_IMAGE *Image);

Parameters

FileName Name of .bit file to use to configure the FPGA.
Image Pointer to location to receive FPGA configuration image.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_NULL_PARAMETER NULL was used illegally as one of the

parameter values
ZESTSC1_FILE_NOT_FOUND File not found
ZESTSC1_FILE_ERROR Error while reading file
ZESTSC1_OUT_OF_MEMORY Not enough memory to complete the

requested operation
ZESTSC1_ILLEGAL_FILE File format is not recognised
ZESTSC1_INVALID_PART_TYPE Illegal FPGA part type

Description

ZestSC1LoadFile can be used to load a .bit file generated by the Xilinx place and route
software into memory for future configuration of the FPGA on the ZestSC1 card. It is
possible to load many configuration files during initialization and select the correct FPGA
image to use during execution of the program. This reduces overhead at configuration
time.

Image is a pointer to a location to receive the configuration image handle. This handle
can be used in future calls to ZestSC1Configure. The handle should be freed by calling
ZestSC1FreeImage when the configuration image is no longer needed.

ZestSC1LoadFile and ZestSC1Configure allow decoupled loading of the bit file and
configuration of the FPGA. Refer to ZestSC1RegisterImage and ZestSC1Configure
for details of how to configure the FPGA from configuration data in memory.

For example:

ZESTSC1_IMAGE Image;
ZESTSC1_HANDLE Handle;

/* Load the .bit file */
ZestSC1LoadImage(“test.bit”, &Image);

/* Other initialization operations here */

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

Orange Tree Technologies

Page 42 of 57

/* Other execution operations here */

/* Configure the FPGA from the image */
ZestSC1Configure(Handle, Image);

 ZestSC1 User Guide

 CONFIDENTIAL Page 43 of 57

ZestSC1Configure

ZESTSC1_STATUS ZestSC1Configure(ZESTSC1_HANDLE Handle,

ZESTSC1_IMAGE Image);

Parameters

Handle Handle of open ZestSC1 card. See ZestSC1OpenCard.
Image FPGA configuration image to use to configure the FPGA.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle
ZESTSC1_ILLEGAL_IMAGE_HANDLE Attempt to use illegal configuration image

handle
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver
ZESTSC1_TIMEOUT Operation timed out

Description

ZestSC1Configure configures the FPGA on the ZestSC1 card from a configuration
image. The configuration image can be created from a .bit file by calling
ZestSC1LoadImage or from data in memory by calling ZestSC1RegisterImage.

Example creating the image from .bit file on disk:

ZESTSC1_IMAGE Image;
ZESTSC1_HANDLE Handle;

/* Load the .bit file */
ZestSC1LoadImage(“test.bit”, &Image);

/* Other initialization operations here */

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Other execution operations here */

/* Configure the FPGA from the image */
ZestSC1Configure(Handle, Image);

Example creating the image from buffer in memory:

extern void *Buffer;
extern unsigned long Length;
ZESTSC1_IMAGE Image;
ZESTSC1_HANDLE Handle;

Orange Tree Technologies

Page 44 of 57

/* Register the FPGA configuration image */
ZestSC1RegisterImage(Buffer, Length, &Image);

/* Other initialization operations here */

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Other execution operations here */

/* Configure the FPGA from the image */
ZestSC1Configure(Handle, Image);

Configuring the FPGA with an incorrect BIT file can damage
your hardware. Ensure that FPGA pins are connected
correctly and do not drive against peripherals on the board.

!

 ZestSC1 User Guide

 CONFIDENTIAL Page 45 of 57

ZestSC1RegisterImage

ZESTSC1_STATUS ZestSC1RegisterImage(void *Buffer,

unsigned long BufferLength,
ZESTSC1_IMAGE *Image);

Parameters

Buffer Buffer containing FPGA configuration data. Normally

generated by Bit2C utility.
BufferLength Length, in bytes, of the configuration data.
Image Pointer to location to receive FPGA configuration image.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_OUT_OF_MEMORY Not enough memory to complete the

requested operation
ZESTSC1_INVALID_PART_TYPE Illegal FPGA part type

Description

ZestSC1RegisterImage creates an FPGA configuration image from an array of raw
configuration data. The FPGA can be configured from this image by calling
ZestSC1Configure.

Buffer points to the start of the raw configuration data and BufferLength is the number of
bytes of configuration data to use. The Bit2C utility supplied on the ZestSC1 installation
disk provides a simple way to generate compatible C arrays from .bit files.

Image is a pointer to a location to receive the configuration image handle. This handle
can be used in future calls to ZestSC1Configure. The handle should be freed by calling
ZestSC1FreeImage when the configuration image is no longer needed.

ZestSC1RegisterImage and ZestSC1Configure allow .bit files to be linked into host
executables to reduce the number of host files required. Refer to
ZestSC1ConfigureFromFile, ZestSC1LoadImage and ZestSC1Configure for details
of how to configure the FPGA from configuration data in a file.

For example:

extern void *Buffer;
extern unsigned long Length;
ZESTSC1_IMAGE Image;
ZESTSC1_HANDLE Handle;

/* Register the FPGA configuration image */
ZestSC1RegisterImage(Buffer, Length, &Image);

/* Other initialization operations here */

Orange Tree Technologies

Page 46 of 57

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Other execution operations here */

/* Configure the FPGA from the image */
ZestSC1Configure(Handle, Image);

 ZestSC1 User Guide

 CONFIDENTIAL Page 47 of 57

ZestSC1FreeImage

ZESTSC1_STATUS ZestSC1FreeImage(ZESTSC1_IMAGE Image);

Parameters

Image FPGA configuration image to free.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_IMAGE_HANDLE Attempt to use illegal configuration image

handle

Description

ZestSC1FreeImage should be called when a configuration image handle is no longer
needed. It is used to free resources allocated during ZestSC1LoadImage and
ZestSC1RegisterImage functions.

For example:

extern void *Buffer;
extern unsigned long Length;
ZESTSC1_IMAGE Image;
ZESTSC1_HANDLE Handle;

/* Register the FPGA configuration image */
ZestSC1RegisterImage(Buffer, Length, &Image);

/* Other initialization operations here */

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Other execution operations here */

/* Configure the FPGA from the image */
ZestSC1Configure(Handle, Image);

/* Free resources associated with the handle */
ZestSC1FreeImage(Image);

Orange Tree Technologies

Page 48 of 57

ZestSC1ReadRegister

ZESTSC1_STATUS ZestSC1ReadRegister(ZESTSC1_HANDLE Handle,

unsigned long Offset,
unsigned char *Value);

Parameters

Handle Handle of open ZestSC1 card. See ZestSC1OpenCard.
Offset Address of register in FPGA.
Value Pointer to location to receive register value.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle
ZESTSC1_NULL_PARAMETER NULL was used illegally as one of the

parameter values
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver
ZESTSC1_TIMEOUT Operation timed out

Description

ZestSC1ReadRegister returns the value of a register from the memory-mapped
interface on the ZestSC1 card FPGA.

Boards fitted with the Cypress FX2 USB controller chip (part number CY7C68013) allow
an offset of 0x0000 to 0x8000. Boards fitted with the Cypress FX2LP USB controller chip
(part number CY7C68013A) allow an offset of 0x2000 to 0x6000.

For example:

ZESTSC1_HANDLE Handle;
char Value;

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Get value of register 0 from board */
ZestSC1ReadRegister(Handle, 0, &Value);

/* Close the card */
ZestSC1CloseCard(Handle);

Attempting to transfer data to/from the FPGA without a
suitable slave interface configured may result in the ZestSC1
‘hanging’. !

 ZestSC1 User Guide

 CONFIDENTIAL Page 49 of 57

ZestSC1WriteRegister

ZESTSC1_STATUS ZestSC1WriteRegister(ZESTSC1_HANDLE Handle,

unsigned long Offset,
unsigned char Value);

Parameters

Handle Handle of open ZestSC1 card. See ZestSC1OpenCard.
Offset Address of register in FPGA.
Value Value to write to register.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver
ZESTSC1_TIMEOUT Operation timed out

Description

ZestSC1WriteRegister sets the value of a register in the memory-mapped interface on
the ZestSC1 card FPGA.

Boards fitted with the Cypress FX2 USB controller chip (part number CY7C68013) allow
an offset of 0x0000 to 0x8000. Boards fitted with the Cypress FX2LP USB controller chip
(part number CY7C68013A) allow an offset of 0x2000 to 0x6000.

For example:

ZESTSC1_HANDLE Handle;

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Set register 0 to value 0x12 */
ZestSC1WriteRegsiter(Handle, 0, 0x12);

/* Close the card */
ZestSC1CloseCard(Handle);

Attempting to transfer data to/from the FPGA without a
suitable slave interface configured may result in the ZestSC1
‘hanging’.

!

Orange Tree Technologies

Page 50 of 57

ZestSC1ReadData

ZESTSC1_STATUS ZestSC1ReadData(ZESTSC1_HANDLE Handle,
 void *Buffer,

unsigned long Length);

Parameters

Handle Handle of open ZestSC1 card. See ZestSC1OpenCard.
Buffer Buffer to receive the data.
Length Number of bytes to transfer. Must be a multiple of 512.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle
ZESTSC1_NULL_PARAMETER NULL was used illegally as one of the

parameter values
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver
ZESTSC1_TIMEOUT Operation timed out

Description

ZestSC1ReadData transfers data from the ZestSC1 card streaming interface to the
Host. Data transfers over the streaming interface must be a multiple of 512 bytes in
length.

For example:

ZESTSC1_HANDLE Handle;
char Buffer[1024];

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Transfer 1k from board to host */
ZestSC1ReadData(Handle, Buffer, 1024);

/* Close the card */
ZestSC1CloseCard(Handle);

Attempting to transfer data to/from the FPGA without a
suitable slave interface configured may result in the ZestSC1
‘hanging’.

!

 ZestSC1 User Guide

 CONFIDENTIAL Page 51 of 57

ZestSC1WriteData

ZESTSC1_STATUS ZestSC1WriteData(ZESTSC1_HANDLE Handle,

void *Buffer,
unsigned long Length);

Parameters

Handle Handle of open ZestSC1 card. See ZestSC1OpenCard.
Buffer Buffer of data to write.
Length Number of bytes to transfer. Must be a multiple of 512.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle
ZESTSC1_NULL_PARAMETER NULL was used illegally as one of the

parameter values
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver
ZESTSC1_TIMEOUT Operation timed out

Description

ZestSC1WriteData transfers data from the Host to the ZestSC1 card streaming
interface. Data transfers over the streaming interface must be a multiple of 512 bytes in
length.

For example:

ZESTSC1_HANDLE Handle;
char Buffer[1024];

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Transfer 1k from host to board */
ZestSC1WriteData(Handle, Buffer, 1024);

/* Close the card */
ZestSC1CloseCard(Handle);

Attempting to transfer data to/from the FPGA without a
suitable slave interface configured may result in the ZestSC1
‘hanging’.

!

Orange Tree Technologies

Page 52 of 57

ZestSC1SetSignalDirection

ZESTSC1_STATUS ZestSC1SetSignalDirection(ZESTSC1_HANDLE Handle,

unsigned char Direction);

Parameters

Handle Handle of open ZestSC1 card. See ZestSC1OpenCard.
Direction Mask of bits for signal direction. A 1 bit indicates a signal from

host to FPGA.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver
ZESTSC1_TIMEOUT Operation timed out
ZESTSC1_ILLEGAL_SIGNAL_MASK The requested mask specifies signals not

available on this card

Description

The ZestSC1 card has 8 general purpose signals routed between host and FPGA. Each of
these signals can be either a general signal from host to FPGA or from FPGA to host.
ZestSC1SetSignalDirection controls which of these functions is assigned to each of the
8 signals.

Direction is an 8 bit mask where bit 0 controls GPP0, bit 1 controls GPP1, bit 2 controls
GPP2 and so on. Each bit should be set to 1 for the signal to be host to FPGA and 0 for
the signal to be FPGA to host. Signals from host to FPGA can be controlled by calling
ZestSC1SetSignals. The host can read signals from the FPGA by calling
ZestSC1ReadSignals.

Since the 8 general purpose signals are connected to pins on the FPGA, it is important
that conflicts do not arise where both the USB interface chip and the FPGA are driving the
same wire. To prevent damage to the ZestSC1 card, it is crucial that signals set to the
host to FPGA direction (1 in the Direction bit mask) are never driven by the FPGA. Note
that all FPGA pins are tri-stated when the FPGA is unconfigured so it is safe to set the
signal direction before configuration.

For example:

ZESTSC1_HANDLE Handle;

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Set GPP0 to be host to FPGA */
ZestSC1SetSignalDirecion(Handle, 1);

 ZestSC1 User Guide

 CONFIDENTIAL Page 53 of 57

/* Configure the FPGA */
ZestSC1ConfigureFromFile(Handle, “example.bit”);

/* Set the signal to ‘active’ */
ZestSC1SetSignals(Handle, 1);

/* Set the signal to ‘inactive’ */
ZestSC1SetSignals(Handle, 0);

/* Close the card */
ZestSC1CloseCard(Handle);

Driving a signal from both the host and FPGA may damage
the ZestSC1 hardware.

!

Orange Tree Technologies

Page 54 of 57

ZestSC1SetSignals

ZESTSC1_STATUS ZestSC1SetSignals(ZESTSC1_HANDLE Handle,

unsigned char Value);

Parameters

Handle Handle of open ZestSC1 card. See ZestSC1OpenCard.
Value Mask of bits to set.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver
ZESTSC1_TIMEOUT Operation timed out
ZESTSC1_ILLEGAL_SIGNAL_MASK The requested mask specifies signals not

available on this card
ZESTSC1_SIGNAL_IS_INPUT One of the requested signals is an input and

cannot be set

Description

ZestSC1SetSignals controls the value of general purpose signals from host to FPGA.
Value is an 8 bit mask where bit 0 controls GPP0, bit 1 controls GPP1, bit 2 controls GPP2
and so on.

Each signal asserted by this function must have been set up as a host to FPGA signal by
ZestSC1SetSignalDirection prior to calling ZestSC1SetSignals.

Since the 8 general purpose signals are connected to pins on the FPGA, it is important
that conflicts do not arise where both the USB interface chip and the FPGA are driving the
same wire. To prevent damage to the ZestSC1 card, it is crucial that signals set to the
host to FPGA direction (1 in the Direction bit mask) are never driven by the FPGA. Note
that all FPGA pins are tri-stated when the FPGA is unconfigured so it is safe to set the
signal direction before configuration.

For example:

ZESTSC1_HANDLE Handle;

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Set GPP0 to be host to FPGA */
ZestSC1SetSignalDirecion(Handle, 1);

/* Configure the FPGA */
ZestSC1ConfigureFromFile(Handle, “example.bit”);

 ZestSC1 User Guide

 CONFIDENTIAL Page 55 of 57

/* Set the signal to ‘active’ */
ZestSC1SetSignals(Handle, 1);

/* Set the signal to ‘inactive’ */
ZestSC1SetSignals(Handle, 0);

/* Close the card */
ZestSC1CloseCard(Handle);

Driving a signal from both the host and FPGA may damage
the ZestSC1 hardware.

!

Orange Tree Technologies

Page 56 of 57

ZestSC1ReadSignals

ZESTSC1_STATUS ZestSC1ReadSignals(ZESTSC1_HANDLE Handle,

unsigned char *Value);

Parameters

Handle Handle of open ZestSC1 card. See ZestSC1OpenCard.
Value Pointer to location to receive active signals.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver
ZESTSC1_TIMEOUT Operation timed out
ZESTSC1_ILLEGAL_SIGNAL_MASK The requested mask specifies signals not

available on this card
ZESTSC1_SIGNAL_IS_OUTPUT One of the requested signals is an output and

cannot be read

Description

ZestSC1ReadSignals can be used to read the value of signals from FPGA to host. Value
is an 8 bit mask of the signal values where bit 0 is GPP0, bit 1 is GPP1, bit 2 is GPP2 and
so on. All signals of interest should be configured as FPGA to host signals by
ZestSC1SetSignalDirection.

For example:

ZESTSC1_HANDLE Handle;
unsigned long Value;

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Set GPP0 to be FPGA to host */
ZestSC1SetSignalDirecion(Handle, 0);

/* Configure the FPGA */
ZestSC1ConfigureFromFile(Handle, “example.bit”);

/* Wait for the signal to become ‘active’ */
do
{
 ZestSC1ReadSignals(Handle, 1, &Value);
} while ((Value&1)==0);

/* Close the card */
ZestSC1CloseCard(Handle);

 ZestSC1 User Guide

 CONFIDENTIAL Page 57 of 57

ZestSC1WaitForInterrupt

ZESTSC1_STATUS ZestSC1WaitForInterrupt(ZESTSC1_HANDLE Handle);

Parameters

Handle Handle of open ZestSC1 card. See ZestSC1OpenCard.

Return Value

ZESTSC1_SUCCESS Function succeeded
ZESTSC1_ILLEGAL_HANDLE Attempt to use illegal card handle
ZESTSC1_INTERNAL_ERROR An unspecified internal error occurred while

communicating with the driver
ZESTSC1_TIMEOUT Operation timed out

Description

ZestSC1WaitForInterrupt can be used to wait for the FPGA to interrupt the host.
Interrupts could be used to indicate the FPGA is ready for data or has completed an
operation or any other event that the host must wait for. The FPGA raises an interrupt
by asserting the User_Interrupt signal (see section 7.1.1.5).

For example:

ZESTSC1_HANDLE Handle;

/* Open a card with ID of 1 */
ZestSC1OpenCard(1, &Handle);

/* Configure the FPGA */
ZestSC1ConfigureFromFile(Handle, “example.bit”);

/* Wait for interrupt */
ZestSC1WaitForInterrupt(Handle);

/* Close the card */
ZestSC1CloseCard(Handle);

